2,560 research outputs found

    A continuous discharge improves the performance of the Cu/CuCl double pulse laser

    Get PDF
    A continuous glow discharge was applied to a Cu/CuCl double pulse laser. Maximum laser pulse energy was observed to increase as much as 35 percent at low buffer gas pressure and 3.5 percent at optimum buffer gas pressure. Minimum and optimum time delays decreased with increasing glow discharge current. The greater pulse energy may be due to increased rate of current rise of the pumping discharge pulse, and decreased contribution to the population of metastable copper from ion recombination

    Electron collision quenching of CO(v) chemiluminescence in CS2/O2 and CS2/O2/N2O flames

    Get PDF
    Chemiluminescence from vibrationally excited carbon monoxide formed by the reaction CS+O-->CO(v)+S was observed in CS2/O2 and CS2/O2/N2O flames to which an electric discharge was applied. Although the total amount of chemiluminescence increased with increasing discharge current probably due to enhanced reaction rates as a result of radical formation, the vibrational distribution was quenched, becoming thermal in character. The thermalization is attributed to superelastic electron collisions [e+CO(v)-->e+CO(v−1)]. The technique demonstrates a sensitive method for detecting collisional transfers between excited states by separating the perturbation (electron collisions) from the initial excitation mechanism (chemical reactions)

    A model for the dissociation pulse, afterglow, and laser pulse in the Cu/CuCl double pulse laser

    Get PDF
    A model which completely describes the Cu/CuCl double pulse laser is presented. The dissociation discharge pulse and afterglow are simulated and the results are used as initial conditions for an analysis of the pumping discharge pulse and laser pulse. Experimental behavior including the minimum, optimum, and maximum delays between pulses, and the dependence of laser pulse energy on dissociation energy are satisfactorily reproduced. An optimum tube temperature is calculated, and the dependence of laser pulse energy on tube temperature (i.e., CuCl vapor pressure) is explained for the first time

    Self-Averaging Scaling Limits of Two-Frequency Wigner Distribution for Random Paraxial Waves

    Get PDF
    Two-frequency Wigner distribution is introduced to capture the asymptotic behavior of the space-frequency correlation of paraxial waves in the radiative transfer limits. The scaling limits give rises to deterministic transport-like equations. Depending on the ratio of the wavelength to the correlation length the limiting equation is either a Boltzmann-like integral equation or a Fokker-Planck-like differential equation in the phase space. The solutions to these equations have a probabilistic representation which can be simulated by Monte Carlo method. When the medium fluctuates more rapidly in the longitudinal direction, the corresponding Fokker-Planck-like equation can be solved exactly.Comment: typos correcte

    A fully-discrete scheme for systems of nonlinear Fokker-Planck-Kolmogorov equations

    Full text link
    We consider a system of Fokker-Planck-Kolmogorov (FPK) equations, where the dependence of the coefficients is nonlinear and nonlocal in time with respect to the unknowns. We extend the numerical scheme proposed and studied recently by the authors for a single FPK equation of this type. We analyse the convergence of the scheme and we study its applicability in two examples. The first one concerns a population model involving two interacting species and the second one concerns two populations Mean Field Games
    • …
    corecore